We introduce the local composite quantile regression (LCQR) to causal inference in regression discontinuity (RD) designs. Kai et al. (2010) study the efficiency property of LCQR, while we show that its nice boundary performance translates to accurate estimation of treatment effects in RD under a variety of data generating processes. Moreover, we propose a bias-corrected and standard error-adjusted t-test for inference, which leads to confidence intervals with good coverage probabilities. A bandwidth selector is also discussed. For illustration, we conduct a simulation study and revisit a classic example from Lee (2008). A companion R package rdcqr is developed.